The Maternally Expressed WRKY Transcription Factor TTG2 Controls Lethality in Interploidy Crosses of Arabidopsis
نویسندگان
چکیده
The molecular mechanisms underlying lethality of F1 hybrids between diverged parents are one target of speciation research. Crosses between diploid and tetraploid individuals of the same genotype can result in F1 lethality, and this dosage-sensitive incompatibility plays a role in polyploid speciation. We have identified variation in F1 lethality in interploidy crosses of Arabidopsis thaliana and determined the genetic architecture of the maternally expressed variation via QTL mapping. A single large-effect QTL, DR. STRANGELOVE 1 (DSL1), was identified as well as two QTL with epistatic relationships to DSL1. DSL1 affects the rate of postzygotic lethality via expression in the maternal sporophyte. Fine mapping placed DSL1 in an interval encoding the maternal effect transcription factor TTG2. Maternal parents carrying loss-of-function mutations in TTG2 suppressed the F1 lethality caused by paternal excess interploidy crosses. The frequency of cellularization in the endosperm was similarly affected by both natural variation and ttg2 loss-of-function mutants. The simple genetic basis of the natural variation and effects of single-gene mutations suggests that F1 lethality in polyploids could evolve rapidly. Furthermore, the role of the sporophytically active TTG2 gene in interploidy crosses indicates that the developmental programming of the mother regulates the viability of interploidy hybrid offspring.
منابع مشابه
TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor.
Mutants of a new gene, TRANSPARENT TESTA GLABRA2 (TTG2), show disruptions to trichome development and to tannin and mucilage production in the seed coat. The gene was tagged by the endogenous transposon Tag1 and shown to encode a WRKY transcription factor. It is the first member of this large, plant-specific family known to control morphogenesis. The functions of all other WRKY genes revealed t...
متن کاملFunctionally homologous WRKY proteins regulate vacuolar acidification in petunia and trichome development in Arabidopsis
In petunia, loci PH1 to PH7 are involved in an unknown vacuolar acidification pathway since disruption of these loci results in an increased vacuolar pH and bluish flowers. PH4 encodes a MYB protein, which regulates, together with regulators of the anthocyanin biosynthesis pathway (AN1, AN2 and AN11), the transcription of (unknown) structural genes involved in vacuolar acidification. Here we sh...
متن کاملA Grapevine TTG2-Like WRKY Transcription Factor Is Involved in Regulating Vacuolar Transport and Flavonoid Biosynthesis
A small set of TTG2-like homolog proteins from different species belonging to the WRKY family of transcription factors were shown to share a similar mechanism of action and to control partially conserved biochemical/developmental processes in their native species. In particular, by activating P-ATPases residing on the tonoplast, PH3 from Petunia hybrida promotes vacuolar acidification in petal ...
متن کاملDosage-Dependent Deregulation of an AGAMOUS-LIKE Gene Cluster Contributes to Interspecific Incompatibility
Postzygotic lethality of interspecies hybrids can result from differences in gene expression, copy number, or coding sequence and can be overcome by altering parental genome dosage. In crosses between Arabidopsis thaliana and A. arenosa, embryo arrest is associated with endosperm hyperproliferation and delayed development similar to paternal-excess interploidy crosses and polycomb-repressive co...
متن کاملParent-of-origin effects on seed development in Arabidopsis thaliana
Many flowering plants are polyploid, but crosses between individuals of different ploidies produce seeds that develop abnormally and usually abort. Often, seeds from interploidy crosses develop differently depending on whether the mother or father contributes more chromosome sets, suggesting that maternal and paternal genomes are not functionally equivalent. Here we present the first cytologica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS Biology
دوره 6 شماره
صفحات -
تاریخ انتشار 2008